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Organic  thermoelectric  (OTE)  materials  that  can  convert
waste  heat  to  electricity  have  aroused  interests  due  to  their
unique  advantages  over  traditional  inorganic  TE  materials,
such  as  light  weight,  mechanical  flexibility,  low  thermal  con-
ductivity,  and  solution  processability[1−4].  In  general,  TE
devices  require  both  p-type  and  n-type  semiconductors.  The
p-type  polymers  have  been  extensively  studied,  showing
rapid  advances,  but  there  are  few  efficient  n-type  TE  poly-
mers[5, 6].  Therefore, the development of high-performance n-
doped conjugated polymers is demanded.

The  TE  performance  is  evaluated  by  the  figure  of  merit,
ZT = S2σT/κ,  where S, σ, T,  and κ are  the  Seebeck  coefficient,
electrical conductivity, absolute temperature, and thermal con-
ductivity,  respectively.  As  the κ values  of  polymers  are  much
lower than that of inorganic materials,  the TE performance of
polymers  can  also  be  determined  by  the  power  factor  (PF  =
S2σ)[7].  Thus,  enhancing σ and S is  the key to improve TE per-
formance.  The  inferior  performance  for  n-type  OTE  materials
is mainly due to their low σ, so we focus on the σ issue in this
article. To enhance the conductivity, some strategies can be ap-
plied, which will be discussed as follows.

Lowering  LUMO  energy  level  is  an  effective  approach  to
improve n-doping[8−10]. Introducing strong electron-withdraw-
ing  groups  or  atoms  to  the  backbone  can  lower  the  LUMO
level[11−13].  The  D–A  copolymer  P(NDI2OD-T2)  has  deep-lying
LUMO level (–3.80 eV). When doped with n-DMBI, a conductiv-
ity  of  ~10–3 S/cm  was  achieved[7].  To  further  down-shift
LUMO level,  Facchetti et al.  designed polymer P(NDI2OD-Tz2)
(Fig.  1)[14].  By  introducing  bithiazole  unit,  the  polymer  pos-
sesses  a  more  planar  backbone  than  N2200,  resulting  in  a
close  π–π  stacking.  The  electron-deficient  nature  of  bith-
iazole enhances electron affinity of the polymer, yielding an en-
hanced σ of 0.1 S/cm and a reasonable PF of 1.5 μW/(m·K2) (Ta-
ble  1).  To  reduce  steric  hindrance  of  NDI,  thiophene-fused
NDI  derivative,  naphtho[2,3-b:6,7-bʹ]dithiophenediimide
(NDTI),  was  developed  by  Takimiya et  al.  Then  they  de-
veloped  a  polymer  PNDTI-BBT-DP  with  strong  electron  affin-
ity.  It  has  a  low  LUMO  level  (~  –4.4  eV),  which  is  sufficiently
low  for  being  doped  by n-DMBI.  The  doped  film  offered  a σ
of 5.0 S/cm and a PF of 14 μW/(m·K2)[15].  Recently, Wang et al.
reported  PNB-TzDP  that  offered  an  excellent  σ  of  11.6  S/cm

and a PF of 53.4 μW/(m·K2)[16]. Another strong electron-accept-
ing unit  BDOPV was  developed by Pei et  al.,  and the derivat-
ive  polymers  have  low  LUMO  levels  and  have  been  investig-
ated  in  various  devices[17].  Among  them,  FBDPPV  delivered  a
high σ of  14  S/cm and a  PF  of  28 μW/(m·K2).  Subsequently,  a
σ over  90  S/cm  was  obtained  from  TBDPPV  polymer  doped
with n-DMBI[18, 19].  Guo et  al.  synthesized  thiazolothienyl  im-
ide  dimer  (DTzTI)  unit  by  replacing  thiophene  with  thiazole
to further  push down LUMO level.  PDTzTI  was  studied in  OT-
FT[20, 21].  When doped with TDAE,  a σ of  4.6 S/cm and a PF of
7.6 μW/(m·K2) were obtained[22]. PCNI-BTI was developed, offer-
ing a σ of 23.3 S/cm and a PF of 10 μW/(m·K2)[23]. B←N coordin-
ation  bonds  show  electron-withdrawing  properties,  gifting
polymers  with  low  LUMO  levels[24].  Liu et  al.  reported  a  poly-
mer  PBN-19  with  BNBP  unit.  After  n-doping,  PBN-19  exhib-
ited a σ of 7.8 S/cm and a PF of 24.8 μW/(m·K2)[25].

Introducing  polar  triethylene  glycol  (TEG)  side  chains  in-
to polymers can improve the miscibility between dopant and
polymer.  Liu et al.  found that the σ and PF of TEG-N2200 can
be  increased  by  a  factor  of  200  after  replacing  alkyl  side
chains  of  N2200  with  TEG  side  chains[26].  It  delivered  a σ of
0.17  S/cm  and  a  PF  of  0.4 μW/(m·K2)  (Table  1)  after  being
doped  with n-DMBI.  They  also  designed  polymer  PNDI2TEG-
2Tz by replacing thiophene with thiazole unit, and the doped
material  showed  a  higher σ of  1.8  S/cm  and  a  higher  PF  of
4.5 μW/(m·K2)  as  compared  with  N2200[27].  Similar  methods
were also used by other groups[28].

In short, we discussed the strategies of lowering LUMO en-
ergy  level  and  incorporating  polar  side  chains  for  making
high-performance  n-type  OTE  materials.  More  efforts  should
be focused on molecular engineering. 
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Fig. 1. The chemical structures of representative n-type OTE materials.

Table 1.   Performance data for n-type OTE materials.
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P(NDI2OD-T2) 0.003 – 0.012 [7]
P(NDI2OD-Tz2) 0.1 –447 ± 15 1.5 [14]
PNDTI-BBT-DP 5 –169 14.2 [15]
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PDPF 1.30 –235 4.65 [10]
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